

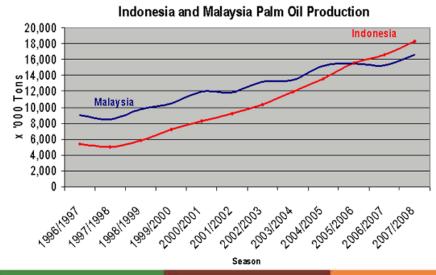
complex world | CLEAR SOLUTIONS*

Methane Capture and Use Potential at Palm Oil Mills in Indonesia

Methane Expo 2013 Vancouver, Canada March 14, 2013

> Palm oil production and relevant factors

- Generation, characteristics and management of products, subproducts and wastes
- Methane use potential scenarios
- Transaction options in Indonesia
- Key barriers and conclusions



List of Abbreviations

- BOD Biochemical Oxygen Demand
- CH₄ Methane
- COD Chemical Oxygen Demand
- CO₂ Carbon Dioxide
- CO₂e Carbon Dioxide Equivalent
- CPO Crude Palm Oil
- EFB Empty Fruit Bunch
- FFB Fresh Fruit Bunch
- GHG Greenhouse Gas
- POME Palm Oil Mill Effluent

Indonesia palm oil production

- ~2 million km²; 17,500+ islands; ~250 million people (2012 est.)
- GHG emissions: 1.8 billion tons CO₂e (2005)
- 1st palm oil producer in the world (2nd = Malaysia)
- 2012 production = ~25 million tons CPO (~18 million Indonesia and Malaysia Palm Oil Production
 20,000 18,000
- Main plantation areas:
 - Sumatra (~65%)
 - Borneo (~30%)

Indonesia

Source: CIA World Factbook

Indonesia palm oil sector structure

• Organizations:

An International Multi Stakeholder Organization and Certification Scheme for Sustainable Palm Oil

- Indonesia Palm Oil Board (IPOB)
- Indonesian Palm Oil Association (GAPKI)
- Indonesian Sustainable Palm Oil (ISPO)
- Mills are members of RSPO
- Structure:
 - 50% State-Owned Companies
 - 50% private
 - ~600 mills (~400 in Sumatra)

Representative mills in Indonesia

- Nominal production capacity of 30, 45, 60 and 90 tons/hr
- Process between 200,000 and 600,000 tons/yr of FFB
- Privately owned mill have higher productivity levels.

> Palm oil production and relevant factors

- Generation, characteristics and management of products, subproducts and wastes
- Methane use potential scenarios
- Transaction options in Indonesia
- > Key barriers and conclusions

Palm oil fruit

Fresh Fruit Bunch (FFB) ~ 100 fruits/FFB

Empty Fruit Bunch (EFB)

- \rightarrow Mesocarp \rightarrow palm oil + fiber
- \rightarrow Endocarp \rightarrow shell
- \blacktriangleright Kernel \rightarrow kernel oil

Indonesia palm oil products, sub-products and waste generation

General characteristics:

- CPO = 20-25% of FFB w/w (product)
- POME = 45-65% of FFB m³/t (effluent) or $\sim 2.4 \text{ m}^3$ POME/ton CPO
- EFB = 20% of FFB w/w (EFB = 20% stalk + 80% spikelets) (used as fertilizer or incinerated)
- Fibers = 10-13% of FFB w/w (can be used in boilers)
- Shells = 5-7% of FFB w/w (can be used in boilers)
- Biomass = 35-40% of FFB w/w
- Also biomass at the plantation: fronds, trunks

Characteristics and management of POME

POME characteristics:

Parameter	Average	Range
рН	4.1	3.3-4.6
POME – COD (mg/L)	50,000	30,000-80,000
POME – BOD (mg/L)	25,000	15,000-40,000
TS (mg/L)	45,000	16,000-95,000
TSS (mg/L)	20,000	1,500-50,000

- POME characteristics are unique for each mill and depend on production levels, extraction process, and characteristics of the FFB
- Multiple conventional anaerobic lagoons with depth greater than 3m, often 4-6 m

Direct methane emissions from POME in Indonesia

Production - CPO	25 million tons/year	
Wastewater generation	2.5 m ³ per ton of CPO	
Chemical Oxygen Demand	50 kg/m ³	
Lagoon use	95%	
Methane conversion factor	0.8	
Max methane producing capacity	0.25 kg CH ₄ /kg COD	
Direct methane emissions	~ 12.5 million tons of CO ₂ e	

- > Palm oil production and relevant factors
- Generation, characteristics and management of products, sub-products and wastes
- Methane use potential scenarios
- Transaction options in Indonesia
- > Key barriers and conclusions

Methane use scenarios

The methane captured can be used to generate:

- thermal energy in boilers
- electricity for the mill and/or to sell to the local grid
 Viability depending on mill's characteristics:
- electricity versus thermal energy needs
- shell generation
- capacity of the existing boiler
- distance to the grid

Scenario 1: Use existing boilers

- Cost of digester and new burner: ~US\$ 1.1 million
- O&M expenses: ~US\$ 130,000
- Annual net revenues:
 ~ US\$400,000
- Almost two thirds of the revenues come from selling the shells which are currently burned in boilers

Scenario 2: Sell electricity to LV grid

- Total investment cost: ~US\$2.6 million
- O&M expenses: ~US\$ 450,000
- Price to sell electricity: 0.147 USD/kWh
- Electricity generation: ~7,500 MWh/year
- Net revenues: US\$ 1 million per year

Scenario 3: Sell electricity to MV grid (20kV)

- Total investment cost: ~US\$ 2.9 million
- O&M expenses: ~US\$ 450,000
- Price to sell electricity: 0.108 USD/kWh
- Electricity generation: ~7,500 MWh/year
- Net annual revenues: ~US\$ 600,000

Summary of analysis

Scenario		
	Total cost	1,050,000
1 - use biogas in existing burner and sell shells	IRR	37%
	NPV	3,187,736
2 - use biogas to generate electricity and sell to the low voltage grid (interconnect to	Total cost	2,615,862
	IRR	37%
nearest town)	NPV	7,886,289
3 - use biogas to generate electricity and sel	Total cost	2,897,181
to the medium voltage grid (interconnect	IRR	19%
with nearest 20 kV line)	NPV	3,663,249

- > Palm oil production and relevant factors
- Generation, characteristics and management of products, sub-products and wastes
- Methane use potential scenarios
- Transaction options in Indonesia
- > Key barriers and conclusions

Alternative transaction options for biogas projects in Indonesia

- 1. The POM owner develops and finances the project by himself and utilizes expert consultants/EPC contractor to design, build, and operate the facility over time on a fee for services basis
- 2. The IPP developer Builds, Owns, and Operates the facility for 10-15 years before Transferring (BOOT) the plant back to the POM owner and assuming all technology risks and responsibilities for arranging financing typically on a project finance basis
- 3. The IPP developer enters into a Joint Venture (JV) arrangement with the POM owner whereby the mill owner provides land, access to the site, use of the waste stream, and a corporate guarantee in return for a negotiated share of the profits.
- 4. Special Purpose Biogas Company established to develop, own and operate multiple, bundled biogas project opportunities on a project finance basis
- 5. Joint Venture Investment Company in Concert with an owner of multiple POMs to develop bundled biogas project assets

- > Palm oil production and relevant factors
- Generation, characteristics and management of products, sub-products and wastes
- Methane use potential scenarios
- Transaction options in Indonesia

> Key barriers and conclusions

Key barriers and challenges to biogas projects from POME

- Incomplete legal and regulatory framework
- Limited models of successful biogas projects and successful projects to prove concept
- Project developers and financial institutions lack understanding of each other's requirements and constraints
- Not their primary line of business dilution of facility resources
- Bad experience, particularly with covered lagoons failure of some CDM projects
- Access to the grid revenue stream is key in making the project feasible

Conclusions

- Large replication potential in Indonesia (1st palm oil producer in the world, current use of open lagoons for POME)
- Viability of biogas projects Best option depends on mills characteristics:
 - generate electricity for the mill or sell to the local grid (low- or medium-voltage)
 - generate thermal energy in boilers
- Need to bundle viable projects

For more information, please contact:

Miguel Franco, Director

4601 North Fairfax Drive, Suite 601,

Arlington, VA 22203

Tel: +1 703-387-2117

Email: miguel.franco@tetratech.com

www.tetratech.com

